Time Series Deformation Monitoring over Large Infrastructures around Dongting Lake Using X-Band PSI with a Combined Thermal Expansion and Seasonal Model

2021 
The long-term spatial-temporal deformation monitoring of densely distributed infrastructures near the lake area is of great significance to understand the urban health status and prevent the potential traffic safety problems. In this paper, the permanent scatterer interferometry (PSI) technology with TerraSAR-X imagery over the area around Dongting Lake was utilized to generate the long-term spatial-temporal deformation. Since the X-band SAR interferometric phases are highly influenced by the thermal dilation of the observed objects, and the deformation of large infrastructures are highly related to external temperature, a combined deformation model considering the thermal expansion and the seasonal environmental factors was proposed to model the temporal variations of the deformation. The time series deformation and the thermal dilation parameter over the area were obtained, and a comparative study with the traditional linear model was conducted. The Dongting Lake Bridge and the typical feature points distributed around the lake were analyzed in details. In order to compensate for the unavailability of external in situ measurements over the area, phase residuals and the subsidence generated through Differential Interferometric Synthetic Aperture Radar (D-InSAR) were utilized to verify the accuracy of the obtained deformation time series. Experiment results suggested that the proposed model is suitable and suggested for the selected study site. The root mean square error (RMSE) of the residual phase was estimated as 0.32 rad, and the RMSE compared with D-InSAR derived deformation was ±1.1 mm.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []