Activation of TIR signaling is required for pattern-triggered immunity

2020 
Plant immune responses are mainly activated by two types of receptors. Plasma membrane-localized pattern recognition receptors (PRRs) recognize conserved features of microbes, and intracellular nucleotide-binding leucine rich repeat receptors (NLRs) recognize effector proteins from pathogens. NLRs possessing N-terminal Toll/interleukin-1 receptor (TIR) domains (TNLs) activate two parallel signaling pathways via the EDS1/PAD4/ADR1s and the EDS1/SAG101/NRG1s modules. The relationship between PRR-mediated pattern-triggered immunity (PTI) and TIR signaling is unclear. Here we report that activation of TIR signaling plays a key role in PTI. Blocking TIR signaling by knocking out components of the EDS1/PAD4/ADR1s and EDS1/SAG101/NRG1s modules results in attenuated PTI responses such as reduced salicylic acid (SA) levels and expression of defense genes, and compromised resistance against pathogens. Consistently, PTI is attenuated in transgenic plants that have reduced accumulation of NLRs. Upon treatment with PTI elicitors such as flg22 and nlp20, a large number of genes encoding TNLs or TIR domain-containing proteins are rapidly induced, likely responsible for activating TIR signaling during PTI. In support, overexpression of some of these genes results in activation of defense responses. Overall, our study reveals that TIR signaling activation is an important mechanism for boosting plant defense during PTI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    69
    References
    10
    Citations
    NaN
    KQI
    []