Castellated tungsten plasma-facing components exposed to H-mode plasma in KSTAR

2016 
Abstract Heat load on the misaligned leading edges of tungsten castellated blocks based on tungsten (W), oxygen-free high conductive copper (OFHC-Cu), and copper-chrome-zirconium (CuCrZr) alloy are studied by COMSOL analysis and infrared (IR) measurements in KSTAR. IR measurements show that 1–3 MW/m 2 of heat flux has been deposited on the blocks during the inter-ELM (edge localized mode) phase in H-mode plasmas. COMSOL analysis indicates that the temperature of 1 mm leading edge in KSTAR under 3 MW/m 2 would reach the recrystallization temperature within 2 s and will be melted within 30 s during a long pulse H-mode shot. Rounded and double chamfered blocks show much better thermal response meaning that shaping of divertor block enhances the heat load handling capability. It seems that a simple COMSOL analysis describes heat load patterns on the tungsten blocks of different shapes qualitatively well. Therefore, simple analysis would be useful to make a quick prediction on heat load patterns of blocks with arbitrary shapes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    8
    Citations
    NaN
    KQI
    []