Detecting nanoscale distribution of protein pairs by proximity-dependent super-resolution microscopy

2019 
Interactions between biomolecules such as proteins underlie most cellular processes. It is crucial to visualize these molecular-interaction complexes directly within the cell, to show precisely where these interactions occur and thus improve our understanding of cellular regulation. Currently available proximity-sensitive assays for in situ imaging of such interactions produce diffraction-limited signals and therefore preclude obtaining information on the nanometer-scale distribution of interaction complexes. By contrast, optical super-resolution imaging provides information about molecular distributions with nanometer resolution which has greatly advanced our understanding of cell biology. However, current colocalization analysis of super-resolution fluorescence imaging is prone to false positive signals as the detection of protein proximity is directly dependent on the local optical resolution. Here we present Proximity-Dependent PAINT (PD-PAINT), a method for sub-diffraction imaging of protein pairs, in which proximity detection is decoupled from optical resolution. Proximity is detected via the highly distance-dependent interaction of two DNA labels anchored to the target species. Labelled protein pairs are then imaged with high contrast and nanoscale resolution using the super-resolution approach of DNA-PAINT. The mechanisms underlying the new technique are analyzed by means of coarse-grained molecular simulations and experimentally demonstrated by imaging high proximity biotin binding sites of streptavidin and epitopes of ryanodine receptor proteins in cardiac tissue samples. We show that PD-PAINT can be straightforwardly integrated in a multiplexed super-resolution imaging protocol and benefits from advantages of DNA-based super-resolution localization microscopy, such as high specificity, high resolution and the ability to image quantitatively.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    1
    Citations
    NaN
    KQI
    []