Single-Energy Material Decomposition in Radiography Using a Three-Dimensional Laser Scanner

2019 
We investigated an efficient method for material decomposition in radiography, which can separate soft tissues and bones from a single radiograph with the aid of a surface image obtained using a three-dimensional laser scanner through which the attenuation length within an object is estimated. This approach does not require double radiation exposures; thus, it can eliminate the technical difficulties associated with the conventional dual-energy material decomposition (DEMD) method, such as increased patient doses, increased execution time, and misregistration errors between two scans. We implemented the proposed algorithm and performed a computational simulation and an experiment to demonstrate its viability for single-energy material decomposition in radiography (80 kVp was used). The image characteristics of the proposed method were investigated and compared with those obtained using the DEMD method (50 kVp and 80 kVp were used). Our results indicate that the estimate of the attenuation length by using the surface image of the examined object may substitute for one of the two dual-energy measurements in conventional DEMD. Accordingly, the proposed method yielded material decomposition results similar to the results elicited by the DEMD method in radiography.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    11
    References
    1
    Citations
    NaN
    KQI
    []