The Biguanides Metformin and Buformin in Combination with 2-Deoxy-glucose or WZB-117 Inhibit the Viability of Highly Resistant Human Lung Cancer Cells

2019 
The biguanides metformin (MET) and to a lesser extent buformin (BUF) have recently been shown to exert anticancer effects. In particular, MET targets cancer stem cells (CSCs) in a variety of cancer types but these compounds have not been extensively tested for combination therapy. In this study, we investigated in vitro the anticancer activity of MET and BUF alone or in combination with 2-deoxy-D-glucose (2-DG) and WZB-117 (WZB), which are a glycolysis and a GLUT-1 inhibitor, respectively, in H460 human lung cancer cells growing under three different culture conditions with varying degrees of stemness: (1) routine culture conditions (RCCs), (2) floating lung tumorspheres (LTSs) that are enriched for stem-like cancer cells, and (3) adherent cells under prolonged periods (8-12 days) of serum starvation (PPSS). These cells are highly resistant to conventional anticancer drugs such as paclitaxel, hydroxyurea, and colchicine and display an increased level of stemness markers. As single agents, MET, BUF, 2-DG, and WZB-117 potently inhibited the viability of cells growing under RCCs. Both MET and BUF showed a strong synergistic effect when used in combination with 2-DG. A weak potentiation was observed when used with WZB-117. Under RCCs, H460 cells were more sensitive to MET and BUF and WZB-117 compared to nontumorigenic Beas-2B cells. While LTSs were less sensitive to each single drug, both MET and BUF in combination with 2-DG showed a strong synergistic effect and reduced cell viability to similar levels compared to the parental H460 cells. Adherent cells growing under PPSS were also less sensitive to each single drug, and MET and BUF showed a strong synergistic effect on cell viability in combination with 2-DG. Overall, our data demonstrates that the combination of BGs with either 2-DG or WZB-117 has “broad-spectrum” anticancer activities targeting cells growing under a variety of cell culture conditions with varying degrees of stemness. These properties may be useful to overcome the chemoresistance due to intratumoral heterogeneity found in lung cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    10
    Citations
    NaN
    KQI
    []