Transient Dynamics of Nonsymmetric Perturbations versus Symmetric Instability in Baroclinic Zonal Shear Flows

2010 
Abstract The linear dynamics of symmetric and nonsymmetric perturbations in unbounded zonal inviscid flows with a constant vertical shear of velocity, when a fluid is incompressible and density is stably stratified along the vertical and meridional directions, is investigated. A small–Richardson number Ri ≲ 1 and large–Rossby number Ro ≳ 1 regime is considered, which satisfies the condition for symmetric instability. Specific features of this dynamics are closely related to the nonnormality of linear operators in shear flows and are well interpreted in the framework of the nonmodal approach by tracing the linear dynamics of spatial Fourier harmonics (Kelvin modes) of perturbations in time. The roles of stable stratification, the Coriolis parameter, and vertical shear in the dynamics of perturbations are analyzed. Classification of perturbations into two types or modes—vortex (i.e., quasigeostrophic balanced motions) and inertia–gravity wave—is made according to the value of potential vorticity. The emergi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    18
    Citations
    NaN
    KQI
    []