The Dynamic Coupling Analysis for All-Wheel-Drive Climbing Robot Based on Safety Recovery Mechanism Model

2018 
Cable is one of the most important parts on cable-stayed bridges. Its safety is very important. The aim of this study is to design an all-wheel-drive climbing robot based on safety recovery mechanism model for automatic inspection of bridge cables. For this purpose, a model of a three-wheel-drive climbing robot with high-altitude safety recovery mechanism is constructed and the basic performances such as climbing ability and anti-skidding properties are analyzed. Secondly, by employing the finite element method, natural frequency of the robot is calculated and that of a cable with concentrated masses is obtained through use of the Rayleigh quotient. Based on the mentioned quantities, the dynamic characteristics of the robot–cable system are further analyzed. In order to verify the climbing ability of the designed robot, a prototype of the robot is made, a robot testing platform is established and the climbing & loading experiments of the robot are carried out. The experiment results illustrated that the robot can carry a payload of 10 kg and safely return along the cable under the influences of inertial force.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    5
    Citations
    NaN
    KQI
    []