Hypermethylation of ATP-binding cassette B1 (ABCB1) multidrug resistance 1 (MDR1) is associated with cisplatin resistance in the A549 lung adenocarcinoma cell line

2016 
Summary Development of multiple drug resistance has been attributed to the overexpression of the ATP-binding cassette B1 (ABCB1) gene. In this study, the major purpose was to assess the expression and methylation levels of ABCB1 in human lung adenocarcinoma and to reveal the relationship between these processes and acquisition of cisplatin (DDP) resistance in the human cancer cell line A549. Methylation and expression levels of the ABCB1 gene ABCB1 in clinical human lung tissue were assessed using bisulphite sequencing, reverse transcription real-time PCR (RT2-PCR) and Western blot methods. Cell viability, DDP resistance and apoptosis of A549 cells were evaluated using the Cell Counting Kit-8 and fluorescence-activated cell sorter analysis. Our results showed that the onset of resistance to the cisplatin analogue, DDP, was associated with hypermethylation of the ABCB1 gene. Expression of the ABCB1 gene was enhanced at both mRNA and protein levels. Treatment with 5-Aza-C contributed to the hypomethylation of the ABCB1 gene and decreased ABCB1 protein expression in A549 cells. In conclusion, this in vitro and human tissue study of lung adenocarcinoma cells demonstrated that hypermethylation of the ABCB1 gene correlated with increased gene expression and was associated with the acquisition of resistance to the cisplatin analogue, DDP in human lung adenocarcinoma cells. Taken together, our study highlighted the connection between increased ABCB1 methylation level and upregulated expression of the gene in lung cancer. Moreover, the abnormally high expression of ABCB1 in A549 cells contributed to the development of the DDP resistance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    12
    Citations
    NaN
    KQI
    []