Effects of Residue Retention and Removal Following Thinning on Soil Bacterial Community Composition and Diversity in a Larix olgensis Plantation, Northeast China

2021 
Thinning is an important management practice for reducing plant competition and improving wood production in forests. The residues from thinning can contain large amounts of carbon (C) and nitrogen (N), and the management methods applied directly after thinning can affect the input of nutrients to soil, change the availability of substrates to soil bacterial communities, and thus affect soil bacterial community structure. Our objective was to determine the effects of different thinning residue treatments on soil bacterial community structure and diversity. Illumina high-throughput sequencing technology was used to sequence the bacterial 16SrRNA V3–V4 variable region of the soil (0–10 cm) of a Larix olgensis plantation to compare the composition and diversity of soil bacterial communities following removal of thinning residues (tree stems plus tree crowns) (RM) and retention of thinning residues (crowns retained with stem removal) (RT) treatments. Total soil carbon (TC) and nitrogen (TN) content in the residue retention treatment were significantly greater than in residue removal treatments (p < 0.05). The relative abundance of the dominant soil bacteria phyla were, in descending order: Proteobacteria, Verrucomicrobia, Acidobacteria, Chloroflexi, Actinobacteria, Nitrospirae, Planctomycetes, Gemmatimonadetes, and Bacteroidetes, with a total relative abundance of more than 80%. Acidobacteria were enriched in the RM treatment, while Proteobateria, Actinobacteria and Bacteroidetes were greater in the RT treatment. Rhizobiales and Rhodospirillales (belonging to the α-Proteobacteria) were enriched in the RM treatment. Soil bacteria α diversity was not significantly different among different treatments. Spearman correlation analysis showed that the α diversity index was significantly negatively correlated with TC and TN. Lefse analysis revealed that 42 significant soil bacteria from phylum to genus were found in the two different thinning residue treatments. Redundancy analysis showed that soil TC and TN were the major drivers of variation in soil bacterial community structure. Overall, thinning residue retention increased the availability of resources to the soil bacterial community, thus changing bacterial community structure. This research provides a theoretical basis for the regulation of plantation forest soil fertility and quality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []