Reconstructing the Last Major Merger of the Milky Way with the H3 Survey.

2021 
Several lines of evidence suggest the Milky Way underwent a major merger at z~2 with a galaxy known as Gaia-Sausage-Enceladus (GSE). Here we use H3 Survey data to argue that GSE entered the Galaxy on a retrograde orbit based on a population of highly retrograde stars with chemistry similar to the largely radial GSE debris. We present the first tailored, high-resolution N-body simulations of the merger. From a grid of ~500 simulations we find a GSE with $M_{*}=5\times10^{8}\ M_{\odot}, M_{\rm{DM}}=2\times10^{11} M_{\odot}$ (a 2.5:1 total mass merger) best matches the H3 data. This simulation shows the retrograde GSE stars are stripped from its outer disk early in the merger before the orbit loses significant angular momentum. Despite being selected purely on angular momenta and radial distributions, this simulation reproduces and explains the following empirical phenomena: (i) the elongated, triaxial shape of the inner halo (axis ratios $10:7.9:4.5$), whose major axis is at ~35{\deg} to the plane and connects GSE's apocenters, (ii) the Hercules-Aquila Cloud & the Virgo Overdensity, which arise due to apocenter pile-up, (iii) the 2 Gyr lag between the quenching of GSE and the truncation of the age distribution of the in-situ halo, which tracks the 2 Gyr gap between the first and final GSE pericenters. We make the following predictions: (i) the inner halo has a "double-break" density profile with breaks at both ~15-18 kpc and 30 kpc, coincident with the GSE apocenters, (ii) the outer halo has retrograde streams containing ~10% of GSE stars awaiting discovery at >30 kpc. The retrograde (radial) GSE debris originates from its outer (inner) disk -- exploiting this trend we reconstruct the stellar metallicity gradient of GSE ($-0.04\pm0.01$ dex $r_{\rm{50}}^{-1}$). These simulations imply GSE delivered ~20% of the Milky Way's present-day dark matter and ~50% of its stellar halo. (ABRIDGED)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    19
    Citations
    NaN
    KQI
    []