Role of nanomechanics in canonical and noncanonical pro-angiogenic ligand/VEGF receptor-2 activation

2012 
Vascular endothelial growth factor receptor-2 (VEGFR2) is an endothelial cell receptor that plays a pivotal role in physiologic and pathologic angiogenesis and is a therapeutic target for angiogenesis-dependent diseases, including cancer. By leveraging on a dedicated nanomechanical biosensor, we investigated the nanoscale mechanical phenomena intertwined with VEGFR2 surface recognition by its prototypic ligand VEGF-A and its noncanonical ligand gremlin. We found that the two ligands bind the immobilized extracellular domain of VEGFR2 (sVEGFR2) with comparable binding affinity. Nevertheless, they interact with sVEGFR2 with different binding kinetics and drive different in-plane piconewton intermolecular forces, suggesting that the binding of VEGF-A or gremlin induces different conformational changes in sVEGFR2. These behaviors can be effectively described in terms of a different “nanomechanical affinity” of the two ligands for sVEGFR2, about 16-fold higher for VEGF-A with respect to gremlin. Such nanomecha...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    20
    Citations
    NaN
    KQI
    []