Chemical durability of Solid Oxide Fuel Cells: Influence of impurities on long-term performance

2011 
Abstract Because of the fuel flexibility of Solid Oxide Fuel Cells (SOFCs), various types of fuels may be applied directly or via a simple reforming process, including hydrocarbons, alcohols, coal gas, biogas, besides hydrogen. However, various types of minor constituents in practical fuels and/or from the system components can cause chemical degradation of SOFCs, such as anode and cathode poisoning phenomena. In this study, we compare the influence of various external impurities, including sulfur, chlorine, phosphorus, boron, and siloxane for anodes, and H 2 O and SO 2 for cathodes, on SOFC performance to have a general overview on long-term chemical durability of SOFCs. Chemical compatibility of Ni with foreign species has also been thermochemically considered. Using common model cells, the stability of cell voltage, electrode overpotential, and ohmic loss up to 3000 h has been experimentally examined for H 2 -based fuels, for hydrocarbon-based fuels, and for partially pre-reformed CH 4 -based fuels. Increase in degradation rate by impurities was verified for various operational parameters. Impurity poisoning mechanisms are discussed for each specific impurity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    135
    Citations
    NaN
    KQI
    []