Electron Tomographic Analysis of Cytoskeletal Cross-Bridges in the Paranodal Region of the Node of Ranvier in Peripheral Nerves

2008 
The node of Ranvier is a site for ionic conductances along myelinated nerves and governs the saltatory transmission of action potentials. Defects in the cross-bridging and spacing of the cytoskeleton is a prominent pathologic feature in diseases of the peripheral nerve. Electron tomography was used to examine cytoskeletal-cytoskeletal, membrane-cytoskeletal, and heterologous cell connections in the paranodal region of the node of Ranvier in peripheral nerves. Focal attachment of cytoskeletal filaments to each other and to the axolemma and paranodal membranes of the Schwann cell via narrow cross-bridges was visualized in both neuronal and glial cytoplasms. A subset of intermediate filaments associates with the cytoplasmic surfaces of supramolecular complexes of transmembrane structures that are presumed to include known and unknown junctional proteins. Mitochondria were linked to both microtubules and neurofilaments in the axoplasm and to neighboring smooth endoplasmic reticulum by narrow cross-bridges. Tubular cisternae in the glial cytoplasm were also linked to the paranodal glial cytoplasmic loop juxtanodal membrane by short cross-bridges. In the extracellular matrix between axon and Schwann cell, junctional bridges formed long cylinders inking the two membranes. Interactions between cytoskeleton, membranes, and extracellular matrix associations in the paranodal region is likely critical not only for scaffolding, but also for intracellular and extracellular communication.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    37
    Citations
    NaN
    KQI
    []