Computational simulation of electromagnetic fields on human targets for magnetic targeting applications

2019 
In the last few years, the use of nanoparticles for therapeutic applications has attracted the interest of many scientists, who are looking for effective methods to target nanoparticles linked to drugs directly to the diseased organs. Among them, magnetic targeting consists of magnetic systems (magnets or coils) which can impress high gradient magnetic fields and then magnetic forces on the magnetic nanoparticles. Despite some studies have reported an effective improvement in drug delivery by using this technique, there is still a paucity of studies able to quantify and explain the experimental results. In this scenario, "in silico" models allow to analyze and compare different magnetic targeting systems in their ability to generate the required magnetic field gradient for specific human targets.In this paper we then evaluated, by means of computational electromagnetics techniques, the attitude of various ad-hoc designed magnetic systems in targeting the heart tissues of differently aged human anatomical models
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    1
    Citations
    NaN
    KQI
    []