Calibration of the space-borne microwave humidity sounder based on real-time thermal emission from lunar surface

2021 
Calibration is a key issue for quantitative application of meteorological satellite data. The complex space environment may cause many uncertainties in data calibration. A highly stable and reliable calibrator in flight is needed. Because the Moon has no atmosphere and no environmental variation, the physical and chemical properties of its surface are stable in the long term. The Moon might be an ideal candidate for in-flight thermal calibration. In advanced satellite-borne microwave remote sensing such as NOAA-18, the deep space view (DSV) of the microwave humidity sounder (MHS) has viewed the Moon many times every year. Using the thermal-physical properties of the lunar regolith derived from the Diviner infrared (IR) brightness temperature (TB) data, we solve the one-dimensional heat conduction equation to obtain the temperature profile of the near side of the lunar regolith medium. The loss tangents of the regolith medium are retrieved from microwave TB data of the Chinese satellite Chang’e-2. The integrated radiative transfer equation is used to simulate the weighted disk-average TB of the lunar surface for the MHS channels at 89, 157, and 183 GHz for the year 2011. The Moon is taken as an extended circular target. The simulated TBs are used to correct the full width at half maximum (FWHM) fitted with the MHS counts. We analyze the influences of the distance between the satellite and the Moon, the lunar phase angle, and the FWHM of the radiometer on the inverted FWHM. The corrected TB data are compared with the simulation. This paper presents a new method for thermal calibration of spaceborne in-flight microwave and millimeter-wave radiometers with the weighted disk-average TB of the lunar surface.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    0
    Citations
    NaN
    KQI
    []