Pt-Sn Supported on Beta Zeolite with Enhanced Activity and Stability for Propane Dehydrogenation

2020 
With the growing global propylene demand, propane dehydrogenation (PDH) has attracted great attention for on-purpose propylene production. However, its industrial application is limited because catalysts suffer from rapid deactivation due to coke deposition and metal catalyst sintering. To enhance metal catalyst dispersion and coke resistance, Pt-based catalysts have been widely investigated with various porous supports. In particular, zeolite can benefit from large surface area and acid sites, which favors high metal dispersion and promoting catalytic activity. In this work, we investigated the PDH catalytic properties of Beta zeolites as a support for Pt-Sn based catalysts. In comparison with Pt-Sn supported over θ-Al2O3 and amorphous silica (Q6), Beta zeolite-supported Pt-Sn catalysts exhibited a different reaction trend, achieving the best propylene selectivity after a proper period of reaction time. The different PDH catalytic behavior over Beta zeolite-supported Pt-Sn catalysts has been attributed to their physicochemical properties and reaction mechanism. Although Pt-Sn catalyst supported over Beta zeolite with low acidity showed low Pt dispersion, it formed a relatively lower amount of coke on PDH reaction and maintained a high surface area and active Pt surfaces, resulting in enhanced stability for PDH reaction. This work can provide a better understanding of zeolite-supported Pt-Sn catalysts to improve PDH catalytic activity with high selectivity and low coke formation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    1
    Citations
    NaN
    KQI
    []