Z-Scheme LaCoO3/g-C3N4 for Efficient Full-Spectrum Light-Simulated Solar Photocatalytic Hydrogen Generation

2020 
Photocatalytic decomposition of water is the most attractive method for the sustainable production of hydrogen, but the development of a highly active and low-cost catalyst remains a major challenge. Here, we report the preparation of LaCoO3/g-C3N4 nanosheets and the utilization of LaCoO3 instead of noble metals to improve the photocatalytic activity for the production of hydrogen. First, LaCoO3 was successfully prepared by the sol-gel method, and then a series of highly efficient Z-scheme LaCoO3/g-C3N4 heterojunction photocatalysts were synthesized by the solvothermal method. Various characterization techniques (X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS), photoluminescence (PL), transient photocurrent response test, electron paramagnetic resonance (EPR)) confirm that the heterostructure and interfacial interaction had been formed between LaCoO3 nanoparticles and g-C3N4 nanosheets. In the photocatalytic water splitting test, LaCoO3/g-C3N4-20 wt % exhibited the highest photocatalytic activity of 1046.15 μmol h-1 g-1, which is 3.5 and 1.4 times higher than those of LaCoO3 and g-C3N4, respectively. This work leads to an inexpensive and efficient LaCoO3/g-C3N4 photocatalysis system for water splitting or other photocatalytic applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    13
    Citations
    NaN
    KQI
    []