Solid-State Lithium Battery Cycle Life Prediction Using Machine Learning

2021 
Battery lifetime prediction is a promising direction for the development of next-generation smart energy storage systems. However, complicated degradation mechanisms, different assembly processes, and various operation conditions of the batteries bring tremendous challenges to battery life prediction. In this work, charge/discharge data of 12 solid-state lithium polymer batteries were collected with cycle lives ranging from 71 to 213 cycles. The remaining useful life of these batteries was predicted by using a machine learning algorithm, called symbolic regression. After populations of breed, mutation, and evolution training, the test accuracy of the quantitative prediction of cycle life reached 87.9%. This study shows the great prospect of a data-driven machine learning algorithm in the prediction of solid-state battery lifetimes, and it provides a new approach for the batch classification, echelon utilization, and recycling of batteries.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    0
    Citations
    NaN
    KQI
    []