Mitochondrial DNA Fragmentation to Monitor Safety and Quality in Roasted Peanuts

2016 
ABSTRACT Mitochondrial DNA (mtDNA) fragmentation has been proposed as a time-temperature integrator (TTI) for high-moisture thermal processes using low-acid, high-temperature and high-acid, low-temperature protocols. In this study, dry roasted peanuts were assayed using the same novel molecular TTI. Enterococcus faecium was evaluated as a Salmonella surrogate for process validation and compared to fragmentation of intrinsic peanut mtDNA and Hunter L color, a quality indicator, for dry roasting. Reduction curve data for E. faecium were highly repeatable as similar kinetics were observed when compared to another study which used a commercial, contract laboratory to validate this same surrogate for use with dry roasted peanuts processes (4-log reduction after 10 min at 167 C). Mitochondrial DNA fragmentation was not linear compared to time at a given temperature, but exhibited a long lag time. D and z-values were calculated using E. faecium, threshold cycle (Ct) and Hunter L color values. D values for E. fae...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    0
    Citations
    NaN
    KQI
    []