Rigorous Justification of Taylor Dispersion via Center Manifolds and Hypocoercivity

2020 
Taylor diffusion (or dispersion) refers to a phenomenon discovered experimentally by Taylor in the 1950s where a solute dropped into a pipe with a background shear flow experiences diffusion at a rate proportional to $$1/\nu $$, which is much faster than what would be produced by the static fluid if its viscosity is $$0 < \nu \ll 1$$. This phenomenon is analyzed rigorously using the linear PDE governing the evolution of the solute. It is shown that the solution can be split into two pieces: an approximate solution and a remainder term. The approximate solution is governed by an infinite-dimensional system of ODEs that possesses a finite-dimensional center manifold, on which the dynamics correspond to diffusion at a rate proportional to $$1/\nu $$. The remainder term is shown to decay at a rate that is much faster than the leading order behavior of the approximate solution. This is proven using a spectral decomposition in Fourier space and a hypocoercive estimate to control the intermediate Fourier modes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    6
    Citations
    NaN
    KQI
    []