Adjusting chemical bonding of hard amorphous CSixNy thin films by N*-plasma-assisted pulsed laser deposition

1999 
Hard amorphous carbon silicon nitride thin films have been grown by pulsed laser deposition (PLD) of various carbon silicon nitride targets by using an additional nitrogen RF plasma source on [100] oriented silicon substrates at room temperature. The influence of the number of laser shots per target site on the growth rate and film surface morphology was studied. Up to about 30 at. % nitrogen and up to 20 at. % silicon were found in the films by Rutherford backscattering spectroscopy (RBS) and X-ray photoelectron spectroscopy (XPS). The XPS of the films showed a clear correlation of binding energy to the variation of PLD parameters. The films show a universal hardness value up to 23 GPa (reference value for silicon substrate 14 GPa) in dependence on target composition and PLD parameters. The results emphasise the possibility of variation of chemical bonding and corresponding properties, such as nanohardness, of amorphous CSixNy thin films by the plasma-assisted PLD process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []