Mechanism of hybrid resistance. The role of a natural antibody in parental bone marrow cell rejection.

1991 
Hybrid resistance (HR) to parental bone marrow growth is specifically directed against hemopoietic histocompatibility (Hh-1) Ag that are present in parental bone marrow cells (bmc). The mechanism of HR seems to be a multistep process. According to a model we proposed earlier, a T cell recognizes the Hh-1 Ag and stimulates a macrophage to secrete IFN-alpha/beta (recognition phase). IFN-alpha/beta activates a NK-like cell that specifically kills the parental bmc (effector phase). We have also described in a previous paper that serum from resistant F1 hybrids contains a humoral factor that seems to be involved in the effector phase of HR. In the present work, we study the role and the nature of this humoral factor. Our results show that this humoral factor: 1) is present in all resistant H-2Db heterozygous F1 hybrids we have tested but not in nonresistant H-2Db homozygous mice; 2) seems to recognize the Hh-1b Ag because it is absorbed on bmc from Hh-1b mice but not on bmc from Hh-1d and Hh-1- mice; and 3) is an IgG1 Ig (natural antibody). These results could help us to explain the specificity of HR at the effector phase by supposing that this natural antibody recognize the Hh-1 Ag and enable NK-like cells to kill parental bmc cells in Hh-1 specific manner.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []