Wiener-Hammerstein Model and Its Learning for Nonlinear Digital Pre-distortion of Optical Transmitter

2020 
We present a simple nonlinear digital pre-distortion (DPD) of optical transmitter components, which consists of concatenated blocks of a finite impulse response (FIR) filter, a memoryless nonlinear function and another FIR filter. The model is a Wiener-Hammerstein (WH) model and has essentially the same structure as neural networks or multilayer perceptrons. This awareness enables one to achieve complexity-efficient DPD owing to the model-aware structure and exploit the well-developed optimization scheme in the machine learning field. The effectiveness of the method is assessed by electrical and optical back-to-back (B2B) experiments, and the results show that the WH DPD offers a 0.52-dB gain in signal-to-noise ratio (SNR) and 6.0-dB gain in optical modulator output power at a fixed SNR over linear-only DPD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    3
    Citations
    NaN
    KQI
    []