cAMP-dependent protein kinase A in grass carp Ctenopharyngodon idella: Molecular characterization, gene structure, tissue distribution and mRNA expression in endoplasmic reticulum stress-induced adipocyte lipolysis.

2020 
Protein kinase A (PKA), one of the most widely studied protein kinases, has many functions in cells, including regulating the metabolism of sugar and lipid. Here we identified nine isoforms of the PKA family in grass carp Ctenopharyngodon idella and obtained their complete coding sequences (CDS), including PRKACAa, PRKACAb, PRKACBa, PRKACBb, PRKAR1A, PRKAR1B, PRKAR2Aa, PRKAR2Ab and PRKAR2B, and PRKACA, PRKACB and PRKAR2A, which may experience fish-specific genome duplication. Sequence analysis showed that the predicted protein structures of PKA gene family members in grass carp were different. Grass carp PRKACAa, PRKACAb, PRKACBa, and PRKACBb contained serine/threonine protein kinases, while PRKAR1A, PRKAR1B, PRKAR2Aa, PRKAR2Ab and PRKAR2B contained two cyclic nucleotide-monophosphate binding domains. PRKACAa, PRKACBa, PRKACBb, PRKAR1A, PRKAR1B and PRKAR2Aa contained 10 coding exons, while PRKACAb and PRKAR2Ab consisted of 12 coding exons and 5 coding exons, respectively. The messenger RNA (mRNA) of the nine PKA isoforms was detected in a wide range of tissues, but their abundance showed tissue-dependent expression patterns. In tunicamycin-induced adipocyte lipolysis, only the mRNA levels of PRKACAb and PRKACBa showed a significant increase in adipocyte (p < .05), indicating that nine PKA isoforms may serve somewhat different roles in endoplasmic reticulum (ER) stress-mediated lipolysis in fish. These results suggested that nine grass carp PKA isoforms may play different roles in tissues, and their expression levels were differently modulated by ER stress in adipocyte.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    2
    Citations
    NaN
    KQI
    []