Completeness results for metrized rings and lattices

2019 
The Boolean ring $B$ of measurable subsets of the unit interval, modulo sets of measure zero, has proper radical ideals (for example, ${0})$ that are closed under the natural metric, but has no prime ideal closed under that metric; hence closed radical ideals are not, in general, intersections of closed prime ideals. Moreover, $B$ is known to be complete in its metric. Together, these facts answer a question posed by J. Gleason. From this example, rings of arbitrary characteristic with the same properties are obtained. The result that $B$ is complete in its metric is generalized to show that if $L$ is a lattice given with a metric satisfying identically either the inequality $d(xvee y,,xvee z)leq d(y,z)$ or the inequality $d(xwedge y,xwedge z)leq d(y,z),$ and if in $L$ every increasing Cauchy sequence converges and every decreasing Cauchy sequence converges, then every Cauchy sequence in $L$ converges; that is, $L$ is complete as a metric space. We show by example that if the above inequalities are replaced by the weaker conditions $d(x,,xvee y)leq d(x,y),$ respectively $d(x,,xwedge y)leq d(x,y),$ the completeness conclusion can fail. We end with two open questions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []