Improved Structural Mapping and Conductive Targeting Delivered by a New 2.5D AEM Inversion Solver

2016 
The advantages of 2.5D (2D geology, 3D source) airborne electromagnetic inversion in 3D geological mapping applications and the identification of conductive drilling targets compared to the more commonly used CDI transforms or simple 1D inversions are demonstrated using examples from different geological settings.The 2.5D inversion application used in this work and described in Silic et al, 2015 is a substantially changed version of ArjunAir, Wilson et al., 2006, a product of CSIRO/AMIRA project P223F. The changes include a new forward model algorithm and a new inversion solver. The application enables the accurate simulation of 3D source excitation for full domain models inclusive of topography, non-conforming boundaries and very high resistivity contrasts. Solution is accurate for a geoelectrical cross-section which is relatively constant along a strike length that exceeds the AEM system footprint.The major innovation includes a new inversion solver with adaptive regularisation which allows the incorpor...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    3
    References
    3
    Citations
    NaN
    KQI
    []