Evaluating the Applicability of a Quantile–Quantile Adjustment Approach for Downscaling Monthly GCM Projections to Site Scale over the Qinghai-Tibet Plateau

2021 
In the context of global climate change, the Qinghai-Tibetan plateau (QTP) has experienced unprecedented changes in its local climate. While general circulation models (GCM) are able to forecast global-scale future climate change trends, further work needs to be done to develop techniques to apply GCM-predicted trends at site scale to facilitate local ecohydrological response studies. Given the QTP’s unique altitude-controlled climate pattern, the applicability of the quantile–quantile (Q-Q) adjustment approach for this purpose remains largely unknown and warrants investigation. In this study, this approach was evaluated at 36 sites to ensure the results are representative of different climatic and surface conditions on the QTP. Considering the practical needs of QTP studies, the study aims to assess its capability for downscaling monthly GCM simulations of major variables onto the site scale, including precipitation, air temperature, wind speed, relative humidity, and air pressure, based on two GCMs. The calibrated projections at the sites were verified against the observations and compared with those from two commonly used adjustment methods—the quantile-mapping method and the delta method. The results show that the general trends of most variables considered are well adjusted at all sites, with a quantile pair of 25–75% for all the variables except precipitation where 10–90% is used. The calibrated results are generally close to the observed values, with the best performance in air pressure, followed by air temperature and relative humidity. The performance is relatively limited in adjusting wind speed and precipitation. The accuracies decline as the adjustment extends into the future; a wider adjustment window may help increase the performance for the variables subject to climate changes. It is found that the performance of the adjustment is generally independent of the locations and seasons, but is strongly determined by the quality of GCM simulations. The Q-Q adjustment works better for the meteorological variables with fewer fluctuations and daily extremes. Variables with more similarities in probability density functions between the observations and GCM simulations tend to perform better in adjustment. Generally, this approach outperforms the two peer methods with broader applicability and higher accuracies for most major variables.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    0
    Citations
    NaN
    KQI
    []