Ambient factors controlling the wintertime precipitation distribution across mountain ranges in the interior western United States. Part II: changes in orographic precipitation distribution in a pseudo-global warming simulation

2019 
AbstractTwo high-resolution (4 km) regional climate simulations over a 10-yr period are conducted to study the changes in wintertime precipitation distribution across mountain ranges in the interior western United States (IWUS) in a warming climate. One simulation represents the current climate, and another represents an ~2050 climate using a pseudo–global warming approach. The climate perturbations are derived from the ensemble mean of 15 global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). These simulations provide an estimate of average changes in wintertime orographic precipitation enhancement and finescale distribution across mountain ranges. The variability in these changes among CMIP5 models is quantified using statistical downscaling relations between orographic precipitation distribution and upstream conditions, developed in Part I. The CMIP5 guidance indicates a robust warming signal (~2 K) over the IWUS by ~2050 but minor changes in relative humidity and clou...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    5
    Citations
    NaN
    KQI
    []