The biosynthesis of phospholipids is linked to the cell cycle in a model eukaryote

2021 
The structural challenges faced by eukaryotic cells through the cell cycle are key for understanding cell viability and proliferation. In this study, we tested the hypothesis that the biosynthesis of structural lipids is linked to the cell cycle. If true, this would suggest that the cells structure would form part the control of the cell cycle. Lipidomics (31P NMR and MS), proteomics (Western immunoblotting) and transcriptomics (RT-qPCR) techniques were used to profile the lipid fraction and characterise aspects of its metabolism at seven stages of the cell cycle of the model eukaryote, Desmodesmus quadricauda. We found considerable, transient increases in the abundance of phosphatidylethanolamine during the G1 phase (+35%, ethanolamine phosphate cytidylyltransferase increased 2{middle dot}5x) and phosphatidylglycerol over the G1/pre-replication phase boundary (+100%, phosphatidylglycerol synthase increased 22x). The relative abundance of phosphatidylcholine fell by ~35% during the G1. N-Methyl transferases for the conversion of phosphatidylethanolamine into phosphatidylcholine were not found in the de novo transcriptome profile, though a choline phosphate transferase was found, suggesting that the Kennedy pathway is the principal route for the synthesis of PC. The fatty acid profiles of the four most abundant lipids suggested that these lipids were not generally converted between one another. The relative abundance of both phosphatidylinositol and its synthase remained constant despite an eightfold increase in cell volume. We conclude that the biosynthesis of the three most abundant structural phospholipids is linked to the cell cycle in D. quadricauda.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    0
    Citations
    NaN
    KQI
    []