Electric field enhanced sample preparation for synthetic polymer MALDI-TOF mass spectrometry via Induction Based Fluidics (IBF)

2009 
Abstract MALDI-TOF mass spectroscopy is used in the characterization of synthetic polymers. MALDI allows for determination of: modal, most probable peak ( M P ), molecular number average ( M N ), molecular weight average ( M W ), polydispersity (PD), and polymer spread ( P SP ). We evaluate a new sample preparation method using Induction Based Fluidics (IBF) to kinetically launch and direct nanoliter volumes to a target without contact. IBF offers signal improvement via field enhanced crystallization. This is the first paper to discuss filed enhanced crystallization in MALDI sample preparation. IBF can increase signal/noise (S/N) and signal intensity for polystyrene (PS), poly(methyl methacrylate) (PMMA), and poly(ethylene glycol) (PEG) across a mass range of 2500–92,000 Da showing more accurate P SP . Increases in S/N range up to: 279% for PS, 140% for PMMA, and 660% for PEG. Signal intensities increased up to: 438% for PS, 115% for PMMA, and 166% for PEG. Cross-polarization microscopy indicates dramatic morphology differences between IBF and micropipette. Finally, we speculate as to why IBF nanoliter depositions afford higher S/N values in experiments conducted in different instrumental configurations even without optimization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    5
    Citations
    NaN
    KQI
    []