Rapid extirpation of a North American frog coincides with an increase in fungal pathogen prevalence: Historical analysis and implications for reintroduction

2017 
As extinctions continue across the globe, conservation biologists are turning to species reintroduction programs as one optimistic tool for addressing the biodiversity crisis. For repatriation to become a viable strategy, fundamental prerequisites include determining the causes of declines and assessing whether the causes persist in the environment. Invasive species—especially pathogens—are an increasingly significant factor contributing to biodiversity loss. We hypothesized that Batrachochytrium dendrobatidis (Bd), the causative agent of the deadly amphibian disease chytridiomycosis, was important in the rapid (<10 years) localized extirpation of a North American frog (Rana boylii) and that Bd remains widespread among extant amphibians in the region of extirpation. We used an interdisciplinary approach, combining interviews with herpetological experts, analysis of archived field notes and museum specimen collections, and field sampling of the extant amphibian assemblage to examine (1) historical relative abundance of R. boylii; (2) potential causes of R. boylii declines; and (3) historical and contemporary prevalence of Bd. We found that R. boylii were relatively abundant prior to their rapid extirpation, and an increase in Bd prevalence coincided with R. boylii declines during a time of rapid change in the region, wherein backcountry recreation, urban development, and the amphibian pet trade were all on the rise. In addition, extreme flooding during the winter of 1969 coincided with localized extirpations in R. boylii populations observed by interview respondents. We conclude that Bd likely played an important role in the rapid extirpation of R. boylii from southern California and that multiple natural and anthropogenic factors may have worked in concert to make this possible in a relatively short period of time. This study emphasizes the importance of recognizing historical ecological contexts in making future management and reintroduction decisions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    109
    References
    20
    Citations
    NaN
    KQI
    []