Design and preliminary test of precision segment positioning actuator for the California Extremely Large Telescope primary mirror

2003 
In order for the California Extremely Large Telescope (CELT) to achieve the required optical performance, each of its 1000 primary mirror segments must be positioned relative to adjacent segments with nanometer-level accuracy. This can be accomplished using three actuators for each segment to actively control the segment in tip, tilt, and piston. The Keck telescopes utilize a segmented primary mirror similar to CELT employing a highly successful actuator design. However, because of its size and the shear number of actuators (3000 vs. 108 for Keck), CELT will require a different design. Sensitivity to wind loads and structural vibrations, the large dynamic range, low operating power, and extremely reliable operation, all achieved at an affordable unit cost, are the most demanding design requirements. This paper examines four actuator concepts and presents a trade-off between them. The concept that best met the CELT requirements is described along with an analysis of its performance. The concept is based on techniques that achieve the required accuracy while providing a substantial amount of vibration attenuation and damping. A prototype actuator has been built to validate this concept. Preliminary tests confirm predicted behavior and future tests will establish a sound baseline for final design and production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    5
    Citations
    NaN
    KQI
    []