Elucidating an Amorphous Form Stabilization Mechanism for Tenapanor Hydrochloride: Crystal Structure Analysis Using X-ray Diffraction, NMR Crystallography, and Molecular Modeling

2018 
By the combined use of powder and single-crystal X-ray diffraction, solid-state NMR, and molecular modeling, the crystal structures of two systems containing the unusually large tenapanor drug molecule have been determined: the free form, ANHY, and a dihydrochloride salt form, 2HCl. Dynamic nuclear polarization (DNP) assisted solid-state NMR (SSNMR) crystallography investigations were found essential for the final assignment and were used to validate the crystal structure of ANHY. From a structural informatics analysis of ANHY and 2HCl, conformational ring differences in one part of the molecule were observed which influence the relative orientation of a methyl group on a ring nitrogen and thereby impact the crystallizability of the dihydrochloride salt. From quantum chemistry calculations, the dynamics between different ring conformations in tenapanor is predicted to be fast. Addition of HCl to tenapanor results in general in a mixture of protonated ring conformers and hence a statistical mix of diastere...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    22
    Citations
    NaN
    KQI
    []