The GALAH Survey: Accreted stars also inhabit the Spite Plateau

2020 
The ESA Gaia astrometric mission has enabled the remarkable discovery that a large fraction of the stars near the Solar neighbourhood appear to be debris from a single in-falling system, the so-called Gaia-Enceladus. One exciting feature of this result is that it gives astronomers for the first time a large sample of easily observable unevolved stars that formed in an extra-Galactic environment, which can be compared to stars that formed within our Milky Way. Here we use these stars to investigate the "Spite Plateau" -- the near-constant lithium abundance observed in metal-poor dwarf stars across a wide range of metallicities (-3<[Fe/H]<-1). In particular our aim is to test whether the stars that formed in the Gaia-Enceladus show a different Spite Plateau to other Milky Way stars that inhabit the disk and halo. Individual galaxies could have different Spite Plateaus --- e.g., the ISM could be more depleted in lithium in a lower galactic mass system due to it having a smaller reservoir of gas. We identified 76 Gaia-Enceladus dwarf stars observed and analyzed by the GALactic Archeology with HERMES (GALAH) survey as part of its Third Data Release. Orbital actions were used to select samples of Gaia-Enceladus stars, and comparison samples of halo and disk stars. We find that the Gaia-Enceladus stars show the same lithium abundance as other likely accreted stars and in situ Milky Way stars, strongly suggesting that the "lithium problem" is not a consequence of the formation environment. This result fits within the growing consensus that the Spite Plateau, and more generally the "cosmological lithium problem" -- the observed discrepancy between the amount of lithium in warm, metal-poor dwarf stars in our Galaxy, and the amount of lithium predicted to have been produced by Big Bang Nucleosynthesis -- is the result of lithium depletion processes within stars.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    136
    References
    5
    Citations
    NaN
    KQI
    []