Polarized Sorting of the Copper Transporter ATP7B in Neurons Mediated by Recognition of a Dileucine Signal by AP-1

2015 
Neurons are highly polarized cells having distinct somatodendritic and axonal domains. Here we report that polarized sorting of the Cu2+ transporter ATP7B and the vesicle-SNARE VAMP4 to the somatodendritic domain of rat hippocampal neurons is mediated by recognition of dileucine-based signals in the cytosolic domains of the proteins by the σ1 subunit of the clathrin adaptor AP-1. Under basal Cu2+ conditions, ATP7B was localized to the trans-Golgi network (TGN) and the plasma membrane of the soma and dendrites but not the axon. Mutation of a dileucine-based signal in ATP7B or overexpression of a dominant-negative σ1 mutant resulted in nonpolarized distribution of ATP7B between the somatodendritic and axonal domains. Furthermore, addition of high Cu2+ concentrations, previously shown to reduce ATP7B incorporation into AP-1–containing clathrin-coated vesicles, caused loss of TGN localization and somatodendritic polarity of ATP7B. These findings support the notion of AP-1 as an effector of polarized sorting in neurons and suggest that altered polarity of ATP7B in polarized cell types might contribute to abnormal copper metabolism in the MEDNIK syndrome, a neurocutaneous disorder caused by mutations in the σ1A subunit isoform of AP-1.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    33
    Citations
    NaN
    KQI
    []