Engineered magnetization and exchange stiffness in direct-write Co-Fe nanoelements.

2020 
Media with engineered magnetization are essential building blocks in superconductivity, magnetism and magnon spintronics. However, the established thin-film and lithographic techniques insufficiently suit the realization of planar components with on-demand-tailored magnetization in the lateral dimension. Here, we demonstrate the engineering of the magnetic properties of CoFe-based nanodisks fabricated by the mask-less technique of focused electron beam induced deposition (FEBID). The material composition in the nanodisks is tuned \emph{in-situ} via the e-beam waiting time in the FEBID process and their post-growth irradiation with Ga ions. The magnetization $M_s$ and exchange stiffness $A$ of the disks are deduced from perpendicular ferromagnetic resonance measurements. The achieved $M_s$ variation in the broad range from $720$ emu/cm$^3$ to $1430$ emu/cm$^3$ continuously bridges the gap between the $M_s$ values of such widely used magnonic materials as permalloy and CoFeB. The presented approach paves a way towards nanoscale 2D and 3D systems with controllable and space-varied magnetic properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    1
    Citations
    NaN
    KQI
    []