Solution-processed Cu2ZnSnS4 nanocrystal solar cells: Efficient stripping of surface insulating layers using alkylating agents

2014 
Solution-processed photovoltaic (PV) devices based on semiconductor nanocrystals (NCs) such as Cu2ZnSnS4 (CZTS) and CuInS2 (CIS) are attracting much attention for use in next-generation solar cells. However, the performance of NC-based devices is hindered by insulating surface-capping ligands that limit transfer/transport of charged carriers. Here, to remove surface-capping ligands (long-chain fatty amines) from NCs, we use the strong alkylating agent methyl iodide, which converts primary amines to quaternary amines that have low coordinating affinity to the NC surface. X-ray diffraction, Raman spectroscopy, and Fourier transform infrared spectroscopy analyses confirm the successful removal of capping ligands from the CZTS surface after treatment with methyl iodide without changing the crystal structure of CZTS. CZTS and CIS NC-based devices treated with methyl iodide exhibit a reproducible PV response under simulated sunlight. The developed route can potentially enhance the performance of NC-based device...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    37
    Citations
    NaN
    KQI
    []