Evolution of Electronic States and Emergence of Superconductivity in the Polar Semiconductor GeTe by Doping Valence-Skipping Indium

2020 
GeTe is a chemically simple IV-VI semiconductor which bears a rich plethora of different physical properties induced by doping and external stimuli. Here, we report a superconductor-semiconductor-superconductor transition controlled by finely-tuned In doping. Our results reveal the existence of a critical doping concentration x_{c}=0.12 in Ge_{1-x}In_{x}Te, where various properties, including structure, resistivity, charge carrier type, and the density of states, take either an extremum or change their character. At the same time, we find indications of a change in the In-valence state from In^{3+} to In^{1+} with increasing x by core-level photoemission spectroscopy, suggesting that this system is a new promising playground to probe valence fluctuations and their possible impact on structural, electronic, and thermodynamic properties of their host.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []