Contiguity and the quantum theory of measurement

1995 
This paper presents a comprehensive treatement of the problem of measurement in microscopic physics, consistent with the indeterministic Copenhagen interpretation of quantum mechanics and information theory. It is pointed out that there are serious difficulties in reconciling the deterministic interpretations of quantum mechanics, based on the concepts of a universal wave function or hidden variables, with the principle of contiguity. Quantum mechanics is reformulated entirely in terms of observables, represented by matrices, including the statistical matrix, and the utility of information theory is illustrated by a discussion of the EPR paradox. The principle of contiguity is satisfied by all conserved quantities. A theory of the operation of macroscopic measuring devices is given in the interaction repesentation, and the attenuation of the indeterminacy of a microscopic observable in the process of measurement is related to observable changes of entropy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []