Selective Maturation of Temporal Dynamics of Intracortical Excitatory Transmission at the Critical Period Onset.

2016 
Summary Although the developmental maturation of cortical inhibitory synapses is known to be a critical factor in gating the onset of critical period (CP) for experience-dependent cortical plasticity, how synaptic transmission dynamics of other cortical synapses are regulated during the transition to CP remains unknown. Here, by systematically examining various intracortical synapses within layer 4 of the mouse visual cortex, we demonstrate that synaptic temporal dynamics of intracortical excitatory synapses on principal cells (PCs) and inhibitory parvalbumin- or somatostatin-expressing cells are selectively regulated before the CP onset, whereas those of intracortical inhibitory synapses and long-range thalamocortical excitatory synapses remain unchanged. This selective maturation of synaptic dynamics results from a ubiquitous reduction of presynaptic release and is dependent on visual experience. These findings provide an additional essential circuit mechanism for regulating CP timing in the developing visual cortex.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    22
    Citations
    NaN
    KQI
    []