Decode-to-cooperate: a sequential alamouti-coded cooperation strategy in dual-hop wireless relay networks

2017 
An optimal cooperation strategy, decode-to-cooperate, is proposed and investigated for performance improvements in dual-hop wireless relay networks. Based on decode-and-forward (DF) strategy with multiple relay selection, we design a novel scheme such that the source node keeps transmitting sequentially and the selected relays cooperate by transmitting the decoded signal using distributed Alamouti coding. We exploit the multipath propagation effect of the wireless channel to achieve lower probability of error and introduce optimum power allocation and relay positioning. We analyze the scenario when the source to destination direct link is not available and derive a closed form expression for symbol error rate (SER), its upper bound and an asymptotically tight approximation to exploit the performance gain by selecting the optimum relays in a multiple-relay cooperation scheme. Moreover, asymptotic optimum power allocation (based on the SER approximation) and optimal relay positioning are also considered to further improve the SER. The proposed relay selection scheme outperforms cooperative (DF) and non-cooperative schemes by more than 2 dB.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    3
    Citations
    NaN
    KQI
    []