Pyridyl Disulfide Reaction Chemistry: An Efficient Strategy toward Redox-Responsive Cyclic Peptide–Polymer Conjugates

2019 
Cyclic peptide–polymer conjugates are capable of self-assembling into supramolecular polymeric nanotubes driven by the strong multiple hydrogen bonding interactions between the cyclic peptides. In this study, we have engineered responsive nanotubes by introducing a cleavable bond that responds to a reductant utilizing pyridyl disulfide reaction chemistry. Reactions between a cysteine containing cyclic peptide (CP-SH) and pyridyl disulfide containing polymers were initially studied, leading to the quantitative formation of cyclic peptide–polymer conjugates. An asymmetric cyclic peptide–polymer conjugate (PEG-CP-S-S-pPEGA) was then synthesized via orthogonal pyridyl disulfide reaction chemistry and NHS coupling chemistry. The disulfide linker formed by the pyridyl disulfide reaction chemistry was then selectively reduced to thiols in the presence of a reductant, enabling the transition of the conjugates from nonassembling unimers to self-assembled supramolecular polymeric nanotubes. It is anticipated that t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    13
    Citations
    NaN
    KQI
    []