Short-term influence of coal mine reclamation using coal combustion residues on groundwater quality.

2016 
Abstract Two full-scale coal mine reclamation projects using coal combustion residues (CCRs) were recently carried out at highwall pit complexes near the Conesville and Cardinal coal-fired power plants owned by American Electric Power. The environment impacts of the reclamation projects were examined by regularly monitoring the leaching characteristics of the backfilling CCRs and the water quality of the uppermost aquifers underlying the sites. With over five years of field monitoring, it shows that the water quality at both demonstration sites had changed since the reclamation began. By analyzing the change of the hydrogeochemical properties, it was concluded that the water quality impact observed at the Conesville Five Points site was unlikely due to the seepage of FGD material leachates. Reclamation activities, such as logging, grading, and dewatering changed the hydrogeological conditions and resulted in the observed water quality changes. The same hydrogeological effect on water quality was also found at the Cardinal Star Ridge site during the early stage of the reclamation (approximately the first 22 months). Subsequent measurements showed the water quality to be strongly influenced by the water in the reclaimed highwall pit. Despite the changes to the water quality, the impacts are insignificant and temporary. None of the constitutes showed concentration levels higher than the regulatory leaching limits set by the Ohio Department of Natural Resources' Division of Mineral Resources Management for utilizing CCRs in mined land reclamation. Compared to the local aquifers, the concentrations of eleven selected constituents remained at comparable levels throughout the study period. There are four constituents (i.e., As, Be, Sb, and Tl) that exceeded their respective MCLs after the reclamation began. These detections were found shortly (i.e., within 2 years) after the reclamation began and decreased to the levels either lower than the respective detection limits or similar to the background levels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []