Isobaric Multiplet Mass Equation within nuclear Density Functional Theory.

2019 
We extend the nuclear Density Functional Theory (DFT) by including proton-neutron mixing and contact isospin-symmetry-breaking (ISB) terms up to next-to-leading order (NLO). Within this formalism, we perform systematic study of the nuclear mirror and triple displacement energies, or equivalently of the Isobaric Multiplet Mass Equation (IMME) coefficients. By comparing results with those obtained within the existing Green Function Monte Carlo (GFMC) calculations, we address the fundamental question of the physical origin of the ISB effects. This we achieve by analyzing separate contributions to IMME coefficients coming from the electromagnetic and nuclear ISB terms. We show that the ISB DFT and GFMC results agree reasonably well, and that they describe experimental data with a comparable quality. Since the separate electromagnetic and nuclear ISB contributions also agree, we conclude that the beyond-mean-field electromagnetic effects may not play a dominant role in describing the ISB effects in finite nuclei.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []