Uncertainty of Passive Imager Cloud Optical Property Retrievals to Instrument Radiometry and Model Assumptions: Examples from MODIS

2013 
The optical and microphysical structure of clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS on the NASA EOS Terra and Aqua platforms, simultaneous global-daily 1 km retrievals of cloud optical thickness (COT) and effective particle radius (CER) are provided, as well as the derived water path (WP). The cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate retrieval datasets for various two-channel retrievals, typically a VISNIR channel paired with a 1.6, 2.1, and 3.7 m spectral channel. The MOD06 forward model is derived from on a homogeneous plane-parallel cloud. In Collection 5 processing (completed in 2007 with a modified Collection 5.1 completed in 2010), pixel-level retrieval uncertainties were calculated for the following non-3-D error sources: radiometry, surface spectral albedo, and atmospheric corrections associated with model analysis uncertainties (water vapor only). The latter error source includes error correlation across the retrieval spectral channels. Estimates of uncertainty in 1 aggregated (Level-3) means were also provided assuming unity correlation between error sources for all pixels in a grid for a single day, and zero correlation of error sources from one day to the next. I n Collection 6 (expected to begin in late summer 2013) we expanded the uncertainty analysis to include: (a) scene-dependent calibration uncertainty that depends on new band and detector-specific Level 1B uncertainties, (b) new model error sources derived from the look-up tables which includes sensitivities associated with wind direction over the ocean and uncertainties in liquid water and ice effective variance, (c) thermal emission uncertainties in the 3.7 m band associated with cloud and surface temperatures that are needed to extract reflected solar radiation from the total radiance signal, (d) uncertainty in the solar spectral irradiance at 3.7 m, and (e) addition of stratospheric ozone uncertainty in visible atmospheric corrections. A summary of the approach and example Collection 6 results will be shown.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []