Inflammation, obesity, and the metabolic syndrome.

2007 
Adipose tissue expresses cytokines which inhibit insulin signalling pathways. Obesity also results in impairment of endothelium-dependent vasodilatation to insulin. We have previously suggested that adipocytokines might contribute to the coexistence of insulin resistance and endothelial dysfunction. However, the adipocytokine best characterised as causing insulin resistance is tumour necrosis factor-a (TNF-a), a molecule which under normal circumstances circulates in low concentrations. We propose a vasoregulatory role for local deposits of fat around blood vessels, which may contribute both to insulin action and to vascular endothelial dysfunction. In particular, we propose that the localised fat depot around the origin of skeletal muscle arterioles may play a physiological role in blood flow distribution. Isolated rat arterioles are under dual regulation by insulin, which activates both endothelin-1 mediated vasoconstriction and nitric oxide mediated vasodilatation. In obese rat arterioles, insulin-stimulated nitric oxide synthesis is impaired, resulting in unopposed vasoconstriction. We propose this to be the consequence of production of TNF-a from the fat surrounding the vessel origin - a depot to which we ascribe a specialist vasoregulatory role. We suggest that this cytokine accesses the nutritive vascular tree to inhibit insulin-mediated capillary recruitment - a mechanism we term 'vasocrine' signalling. We also suggest a homology between periarteriolar fat and both periarterial and visceral fat, which may, through outside-to-inside signalling, play a direct role in producing the inflammatory changes found in atherosclerotic plaques, so explaining relationships between visceral fat, insulin resistance, and vascular disease.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    133
    Citations
    NaN
    KQI
    []