Thermoelectric properties of non-stoichiometric CaMnO3-δ composites formed by redox-activated exsolution

2019 
Abstract A novel synthesis route for preparing well-defined composites based on CMO has been established taking advantage of the unique phase relations in the system Ca-Mn-O at reducing- and oxidizing atmosphere, respectively. Samples corresponding to stoichiometric CMO and composites with 5 and 10 vol % of Ruddlesden-Popper (Ca4Mn3O10)- and spinel (CaMn2O4)-phases, respectively, were prepared with final densities >91 %. The presence of secondary phases significantly enhanced the electrical conductivity compared to stoichiometric CMO. The highest electrical conductivity was observed for CMO with 10 vol % spinel varying between 55 and 75 S/cm at temperatures between 100 and 900 oC. This composition also exhibited the highest figure-of-merit (zT) in this study, reaching 0.083 at 800 oC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    9
    Citations
    NaN
    KQI
    []