Accelerated motion and the self-force in Schwarzschild spacetime

2018 
We provide expansions of the Detweiler-Whiting singular field for motion along arbitrary, planar accelerated trajectories in Schwarzschild spacetime. We transcribe these results into mode-sum regularization parameters, computing previously unknown terms that increase the convergence rate of the mode-sum. We test our results by computing the self-force along a variety of accelerated trajectories. For non-uniformly accelerated circular orbits we present results from a new 1+1D discontinuous Galerkin time-domain code which employs an effective-source. We also present results for uniformly accelerated circular orbits and accelerated bound eccentric orbits computed within a frequency-domain treatment. Our regularization results will be useful for computing self-consistent self-force inspirals where the particle's worldline is accelerated with respect to the background spacetime.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    125
    References
    6
    Citations
    NaN
    KQI
    []