Using Curriculum Learning in Pattern Recognition of 3-dimensional Cryo-electron Microscopy Density Maps

2020 
Although Cryo-electron microscopy (cryo-EM) has been successfully used to derive atomic structures for many proteins, it is still challenging to derive atomic structure when the resolution of cryo-EM density maps is in the medium range, e.g., 5-10 A. Studies have attempted to utilize machine learning methods, especially deep neural networks to build predictive models for the detection of protein secondary structures from cryo-EM images, which ultimately helps to derive the atomic structure of proteins. However, the large variation in data quality makes it challenging to train a deep neural network with high prediction accuracy. Curriculum learning has been shown as an effective learning paradigm in machine learning. In this paper, we present a study using curriculum learning as a more effective way to utilize cryo-EM density maps with varying quality. We investigated three distinct training curricula that differ in whether/how images used for training in past are reused while the network was continually trained using new images. A total of 1,382 3-dimensional cryo-EM images were extracted from density maps of Electron Microscopy Data Bank in our study. Our results indicate learning with curriculum significantly improves the performance of the final trained network when the forgetting problem is properly addressed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    0
    Citations
    NaN
    KQI
    []